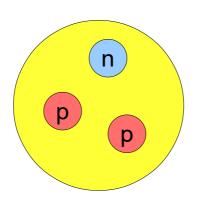
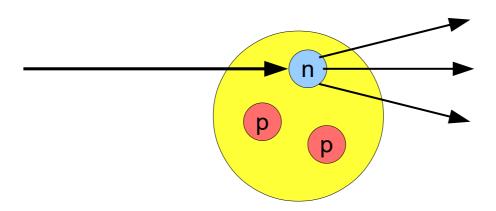
BeAGLE: e + ³He


Mark D. Baker

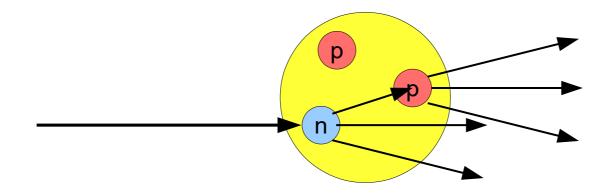
13-August-2020


$e + {}^{3}He \rightarrow e' + p + p + X$

- Symptom is that the event fails ~80% of the time and when it doesn't fail, the p+p system has very little kinetic energy in it's own CM.
- It is NOT confusion over "²He=diproton". For DPMJET/Fluka M(²He)≈2M_p. No false binding.
- It's a kinematic / conceptual problem.

3He in BeAGLE / DPMJET

DPMJET Nuclear model is: 3 on-mass-shell nucleons sitting in a potential.


The "remnant" 4-momentum is calculated by momentum conservation. E.g. for energy, take E_{eTRF} +M(³He) and subtract out the Pythia KS==1 particles. Typically, this leaves E_{pp} < 2M_p.

Two prong approach

- Simple ad-hoc approach:
 - Treat spectator nucleons as on mass-shell, leading to too much energy (as in e+D).
 - Then I have an ad-hoc prescription for removing this excess energy from the whole system.
 - Effectively steals energy from hard process to put protons on mass-shell while leaving their 3momentum not too far from the original p_F distribution.
- Use spectral function etc. Kong w/ Jackson

Additional issue

 However we handle the kinematics, we have to make sure that the case of INC is handled consistently, which is not entirely trivial.

Important to push this

- Z/A for ³He is very different from C or Pb and the proton "off-momentum" detector is probably not well optimized for proton detection from ³He.
- Goal: Some results by end of August.